Klasse BVKT1

2. Schulaufgabe aus der Mathematik am 09.05,2011

Aufgabe 1

- 1.0 Gegeben sind die Punkte P(-4 |14), Q(2|2) und R(6|4) sowie die reelle Funktion $f_k: x \mapsto -\frac{1}{2} \, x^2 kx + 1 \,$ mit $k \in I\!\!R$.
- 1.1 Bestimmen Sie den Funktionsterm p(x) der quadratischen Funktion p, deren Graph durch die Punkte P, Q und R verläuft. (Ergebnis: $p(x) = \frac{1}{4}x^2 \frac{3}{2}x + 4$)
- 1.2 Berechnen Sie den Scheitel der Parabel p an, und zeichnen ihren Graphen für $-2 \le x \le 7$ in das vorhandene Koordinatensystem. [4]
- 1.3 Beschreiben Sie möglichst genau und ohne weitere Berechnung, wie der Graph von f_k [2] im Koordinatensystem verläuft.
- 1.4 Berechnen Sie, für welche Werte von k sich die Graphen von p und von f_kin genau zwei Punkten schneiden

Aufgabe 2

- 2.0 Gegeben ist die reelle Funktion g: $x \mapsto \frac{1}{32} x^3 \frac{3}{2} x + 4$. Ihr Graph G_g hat an der Stelle $x_0 = 4$ eine Nullstelle
- 2.1 Berechnen Sie alle Nullstellen von G_g mit ihren Vielfachheiten und zeichnen Sie den Graphen G_g für $-8 \le x \le 7$ in das vorhandene Koordinatensystem.
- 2.2 Der Graph G_g besitzt an der Stelle $x_1 = -8$ eine Tangente t. [8] Berechnen Sie ihren Funktionsterm t(x) und zeichnen Sie ihren Graphen. (Zwerg.: m = 4,5)
- 2.3 Geben Sie den allgemeinsten Funktionsterm einer Polynomfunktion v vierten Grades mit der größtmöglichen Zahl von Parameter an, dessen Graph die selben Nullstellen wie der Graph von g hat. Geben Sie auch an, welche Werte für die Parameter zulässig sind.
- 2.4 Berechnen Sie die Koordinaten der gemeinsamen Punkte von G_g und G_p (vgl. 1.1) [4]

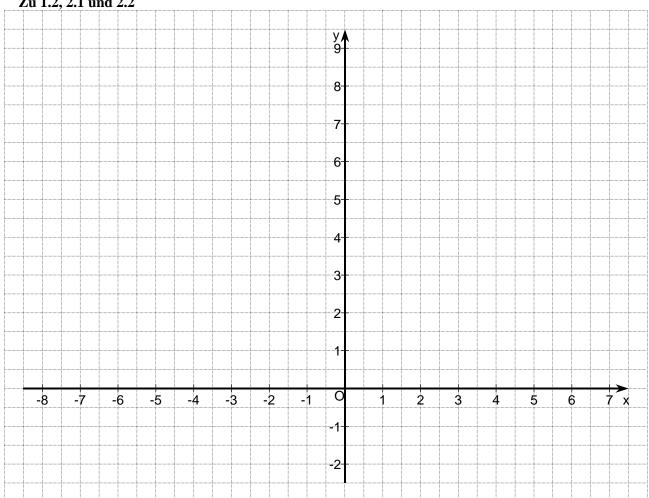
Aufgabe 3

- 3.0 Eine Lampe der Höhe h befindet sich in einer horizontalen Entfernung a = 9 m von einer Mauer (Höhe b = 1,5 m; Dicke vernachlässigbar).

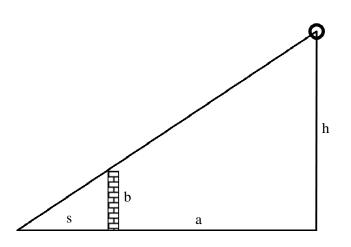
 Die Mauer wirft einen Schatten der Länge s = 3 m.
- 3.1 Berechnen Sie die Höhe h der Lampe. [3]
- 3.2 Berechnen Sie, um wie viel der Schatten einer 2 m hohen Mauer länger wäre. [4]

Aufgabe 4

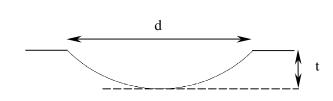
- 4.0 Eine Kugel mit einem Radius von r = 5 [LE] hinterlässt beim Aufprall in einem Sandbett einen Abdruck mit einem Durchmesser von d = 6 [LE].
- 4.1 Berechnen Sie die Eindringtiefe t (vgl. Skizze auf dem Beiblatt) [7] Ergänzen Sie dazu die Skizze mit von Ihnen verwendeten Strecken.


Klasse BVKT1 2. Schulaufgabe aus der Mathematik am 09.05.2011

NP


N.T	
Name:	

1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1	3.2	4.1	Σ


Zu 1.2, 2.1 und 2.2

Aufgabe 3

Aufgabe 4

